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Disclaimer
This presentation reflects the views of the 

presenters and should not be construed to 
represent FDA’s views or policies.
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Outline (Part I) 
• Concepts and principles for testing multiple hypotheses of 

confirmatory clinical trials 
• α-recycling concepts in testing multiple hypotheses
• Closed Testing Procedure (CTP)

o How the CTP with the Weighted Bonferroni tests  connects 
to the alpha-recycling and graphical methods? 

• SR (sequentially rejective) graphical methods using:
o Weighted Bonferroni tests
o Weighted parametric tests for greater power
o Simes tests for greater power

• Concluding Remarks (Part I)
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Outline (Part II)  
• Brief introductions on B-values and Z-scores used in GS 

(Group Sequential) test procedures and on alpha-
spending functions (Ref: Proshan, Lan and Wittes; 2007)

• GS test procedures for testing multiple hypotheses 
o Methods based on the Bonferroni inequality

o Method based on the CTP (Tang & Geller, 1999)

o The case of testing 2 hypotheses 

o The general case of testing multiple hypotheses on using the 
graphical method (Maurer & Bretz, 2013) 

• Example of a GS trial design for testing a primary and a 
secondary endpoint of a trial

• Concluding remarks (Part II)
5
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2 books and 2 regulatory documents

• Multiple Testing Problems in Pharmaceutical Statistics - 2009
Editors: A. Dmitrienko, A. C. Tamhane, and F. Bretz. 
Published by Chapman, and Hall/CRC Press, New York 
Chapter 1: Multiplicity Problems in Clinical Trials. A 
Regulatory Perspective (by Huque MF, and Röhmel J) 

• Multiple Comparison Using R - 2010
by Bretz, F., Hothorn, T., and Westfall, P; Published by 
CRC Press, New York

• CPMP/EWP/908/99. “Points to Consider on Multiplicity Issues 
in Clinical Trials,” 

• FDA draft guidance on “multiple endpoints in clinical trials,” 
2015 (to be released) 
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References on GS methods

• Statistical Monitoring of Clinical Trials 
By Proschan, Lan and Wittes
2007 print, by Springer (springer.com)

• Group Sequential Methods
By Jennison & Turnbull
Published in 2000 by Chapman &Hall/CRC, New York
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Confirmatory clinical trials are generally 
designed with multiple objectives

• Primary objectives: 
– If the trial wins on one or more primary objectives, 

then one can characterize clinically relevant benefits 
of the study treatment

– These objectives are defined in terms of the so called 
“primary endpoints” (PEs)

• Secondary objectives: 
– These are for describing additional clinically pertinent 

benefits of the study treatment. The secondary 
objectives are defined in terms of the so called 
“secondary endpoints” (SEs). 

• Other objectives (e.g., tertiary, supportive, and 
exploratory) 10Huque 2015



Primary vs. secondary endpoints:

• They differ in concept and purpose
 Efficacy of a treatment is derived on demonstrating clinically 

meaningful and statistically significant  benefits of the study 
treatment in one or more primary endpoints satisfying a pre-
defined clinical win scenario.

 In general, SEs alone are not suitable for this special purpose. 
 SEs are generally used for establishing treatment benefits in 

addition to those already established by one or more PEs 

• Reference: 
O’Neill RT. Secondary endpoints cannot be validly 
analyzed if the primary endpoint does not demonstrate 
clear statistical significance. Controlled Clinical Trials 
1997; 18: 550-556.
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Multiplicity in clinical trials

• Multiplicity in a clinical trial arises when the trial design 
allows to win for efficacy or safety in multiple ways 
 Causes the Type I error rate to inflate requiring 

statistical adjustments for its control 
 There are useful statistical approaches to handle 

this 

• Example: Consider a clinical trial that is designed to 
compare a new treatment to control for showing that this 
new treatment is superior to control in  any of the three 
specified primary endpoints.
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Multiplicity in clinical trials (cont’d)
• Example: Consider a drug trial for Alzheimer’s disease 

that compares a new drug to control on two PEs: 

• ADAS-Cog (cognition scale) and 

• CIBIC plus (clinical global scale).  

• Clinical win criterion: Statistical test for the treatment 
effect needs to be statistically significant at the 0.025 
level (by 1-sided test) for each specified endpoint. 

• Is there a multiplicity issue here? 
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Multiplicity in clinical trials (cont’d)

• Example: Consider a drug trial for epilepsy that 
compares a new treatment  to control on 3 PEs: 

A= seizure rate 
B= drop attack rate
C=  seizure severity 

• Clinical win criterion: Show benefit of the study 
treatment either for A or for both B and C (Dmitrienko, 
D’Agostino, and Huque; 2013)

• Is there a multiplicity issue here? 
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Win on at least 
one PE 

Win on all
PEs

•Alpha adj : YES
•Impacts power 

•No alpha adj. 
•Impacts power

Win on 2 PEs from 
Column 1 and on 1
PE from column 2

Win by testing 
in sequence

No alpha
Adj, 

Clinical trial designs often come with 
different efficacy win criteria

Win on a single
specified
Primary E



Hypotheses in confirmatory trials usually 
follow a hierarchical structure

• PE hypotheses are considered more important
– SE hypotheses are usually tested for statistical 

significance after there is a favorable clinically meaningful 
and statistically significant result involving one or more 
PEs 

– Statistical approaches for clinical trials are therefore 
tailored to this hierarchical structure, normally optimizing 
the power for testing the PE hypotheses

• For confirmatory trials, the use of standard methods such as 
Bonferroni, Holm, Hochberg, Dunnett t-tests, etc., on ignoring 
such  hierarchical structures of test hypotheses, are generally 
considered inefficient 
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Continuum for the overall Type I error rate 
control

FDA | 2012 17

Other 
Endpoints

(e.g., tertiary, 
supportive, 
exploratory, 

etc.)

Secondary
Endpoints 
(Additional 
Benefits)

Primary 
Endpoints 
(Primary 
Benefits)

Overall error rate should not exceed a pre-specified level α



Statistical methods for confirmatory trials

• Statistical methods used are those that control overall 
Type I error rate (FWER) in the strong sense  across 
both the primary and secondary families of hypotheses, 
so that conclusions of treatment benefits can be made at 
the individual hypothesis level 

• Statistical methods that control FWER only in the weak 
sense is generally not considered. 

• For confirmatory trials, hardly ever one is interested in 
the  whether all hypotheses are jointly true or not. 

18

Reference: Hochberg and Tamhane (1987)
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Consequence of analyzing each 
secondary endpoint at the 0.05 level

• A practice has been to analyze a number of secondary 
endpoints each at the 0.05 level after  successful results 
on one or more primary endpoints. 

• This practice can have high inflation of the FWER 
(except for a very special case when these secondary 
endpoints are tested by the fixed sequence method after 
successful results on all specified primary endpoints).
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Example 1

• Consider treatment-to-control comparisons in a trial on 4 
endpoints (Dmitrienko, D’Agostino, and Huque; 2013):

A is primary 

B, C and D are secondary

• Test strategy:  

Test for A at level 0.05

If the test for A is significant, then test for B, C, and D 
each at level 0.05
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Example 1 (cont’d)
• Suppose that the global null hypothesis is true, i.e., there 

is no treatment effects for any endpoint:

– Then the probability of falsely concluding treatment 
effect in any endpoint =  0.05. That is FWER = 0.05.  

– Why? Because, tests for endpoints B, C, and D occur 
only after the test for endpoint A is significant at level 
0.05. This renders the size of error rate for secondary 
endpoints not to exceed 0.05

• Why is then a problem?
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Example 1 (cont’d)
• The previous calculation focused only on one null 

hypothesis configuration of true and false null 
hypotheses 

• Doing this can lead to a substantial underreporting 
of true error rate!!! 

• For example, consider the configuration:
– The null hypothesis for A is false but those for B, C, 

and D are true
– Then the error rate for the test strategy can be as high 

as 1 − (1 − 0.05)3 = 0.142 (on assuming tests are 
independent)

• If 5 secondary endpoints then FWER = 0.226
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Issue of alpha for the secondary endpoint 
family

Should the secondary endpoint family be always 
analyzed at the full alpha level (e.g., at 0.05) after 
the trial is  successful on one or more specified 
primary endpoints?
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Issue of alpha for the secondary endpoint 
family (cont’d)

• If the trial has a single PE and several SEs, and if the 
trial is successful on that PE then full alpha is available 
for the secondary endpoint family.

• If the trial has two or more PEs and the trial is 
successful on all specified PEs then also full alpha is 
available for the secondary endpoint family. (follows 
from the gate-keeping test strategy)

• What about the situation when the trial is successful on 
some but not on all specified primary endpoints? Can 
the secondary endpoint family be assigned full alpha?
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Example 2
• Consider a 2-arm trial designed to compare a 

treatment to control on two PEs (A and B) and on 
single secondary endpoint C

• Suppose that the Bonferroni method is applied for 
testing for A and B with each test at level 0.025, on 
splitting the trial alpha of 0.05 

• Suppose that at the conclusion of the trial the 
observed treatment effect p-values are: pA < 0.001 
and pB= 0.20.

• Question: Should there be full alpha of 0.05 
available for this case for testing for the secondary 
endpoint C?



Example  2: Test PEs A and B, each at level 0.025, if win in 
one of them, then tests the secondary endpoint C at level 0.05

26

A
Effect
0.025

B 
No Effect
0.025

C 
No Effect
0.05

No type I 
error in 
concluding 
A as 
significant 

Type I error 
rate of 0.025 
in concluding 
B as 
significant

Type I error 
rate of 0.05 
in testing C

Error rate as large as:
1 – (1- 0.025) x (1- 0.05) 
= 0.07375

Primary endpoints Secondary endpoint

(Bonferroni tests)

Inflation

Huque et al. (2013; SBR)
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Confirmatory trial results based on exploratory 
analyses are considered inconclusive. Why?

• Any conclusion of favorable result has a very high 
probability of false positive error

• Besides this high probability, results include serious bias 
components

• Interpretation of p-value is problematic

27Huque 2015



Examples of serious bias components in 
exploratory analyses

1) There is always a desire to report favorable result 
(conflict of interest bias) 

2) Biological plausibility in favor of treatment is usually 
suggested after the result is seen and not before

3) With many analyses, each producing an estimate 
with variability, one pics the one which is most 
favorable. This produces random high bias which 
increases with the number of analyses and increase 
in variability 
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• Thus, exploratory analyses are usually hypotheses 
generating exercises. 

• Putting their results in the drug labels, in medical 
journals, and other publications, somehow to be used for 
promotional purposes, is problematic. 

• Such a practice  can have substantial misleading 
consequences.   

29

Exploratory analyses  (cont’d)
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A paradox noted by a statistician
• A statistician visited a hospital nursery about 45 years ago. 

The nursery was the central gathering place for the hospital’s 
newborns in those days. He was surprised to observe that 
there were 20 babies of 1 sex and only two of the other. 

• He computed a P value for the likelihood that an imbalance 
this extreme would have occurred by chance if indeed there 
were an equal sex distribution in the population at birth

• The 2-sided P value came out to be 0.0001 which he saw to 
be correct. 

• Then what could explain this paradox?
Reference: Clinical trials: discerning hype from substance (Ann of Intern Med 
2010; 153: 400-406; by Thomas Fleming)
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Statistician’s explanation of the paradox

• “I did not walk into the hospital with the intention to 
gather prospective data to assess and report on this 
hypothesis. Rather, the data generated the 
hypothesis.”
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Two key statistical approaches for the analyses 
of the PE and SE hypotheses of clinical trials 

• Gatekeeping methods:
– Dmitrienko A, D’Agostino RB, and Huque MF.  Key multiplicity issues in 

clinical drug development, Statistics in Medicine 2013;  32: 1079 –1111
– Huque MF, Dmitrienko A, and D’Agostino RB. Multiplicity issues in 

clinical trials with multiple objectives. Statistics in Biopharmaceutical 
Research 2013 (November)

• Graphical Methods:
– Bretz F (et al.) A graphical approach to sequentially rejective multiple 

test procedures. Statistics in Medicine 2009; 28: 586-604
– Bretz F (et al.) Graphical approaches for multiple comparison 

procedures using weighted Bonferroni, Simes or parametric tests. 
Biometrical Journal 2011; 53: 894-913

– Maurer W and Bretz F. Multiple testing in group sequential trials using 
graphical approaches.  Statistics in Biopharmaceutical Research 2013; 
5(4): 311-320
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Gatekeeping test strategy

• Useful for testing primary and secondary families of 
endpoints or hypotheses

• The usual strategy is to test all endpoints in the primary 
family by a method such as  Bonferroni and proceed to 
the secondary family of endpoints only if there has been 
statistical success in the primary family. 

• This allows all of the trial alpha to be used for the 
primary family. Thus, maximizing the study power 
for those critical endpoints.  

Huque 2015
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Gatekeeping approach
• Consider two families of endpoints (or hypotheses), one 

primary and the other secondary

Primary family
(A, B)

Test at level 
α1 = α
e.g., α = 0.05

Secondary family
(C, D, E)

Test at level 
α2 = α1 - e

“e”  depends on how many endpoints in the primary family 
are successful.  If all endpoints are successful in this family 
then e = 0. Huque 2015
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Gatekeeping approach w. re-testing

PE (dose D1)
α/2

Significant 

PE (dose D2)
α/2

Not significant 

SE (dose D2)
No test 

SE (dose D1)
α/2

Primary endpoint outcomes

Secondary endpoints

Primary family tests by
the Bonferroni method

Logical restriction:  SE at dose D1 or D2  cannot be tested 
unless PE at that dose is significant

Retest PE at dose D2 at 
level α, if PE and SE at 
dose D1 are both 
successful

Test SE ( at dose D2) if 
retest of PE at this dose 
is successful

Consider 2 endpoints (PE, SE) and 2 dose levels D1 and D2
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Graphical approach is based on the 
concepts of “alpha saved” and “alpha lost”

• If an endpoint (or hypothesis) is tested at a level alpha 
(e.g.,  alpha = 0.025) and the p-value is significant at that 
level then that alpha of 0.025 is “saved” and can be 
accumulated to test a second prospectively specified 
endpoint (or hypothesis)

A B

α1 = 0.025 α2 = 0.025

(This graph is the graphical representation of the Holm’s 
test for testing two hypotheses) 

1

1

Thus, if A is 
successful, then 
alpha at B is 
0.025 +1*0.025 
= 0.05

Huque 2015
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Graphical representation of the 
fixed sequence (FS) method

A B

α1 = 0.05 α2 = 0
1 1 C

α3 = 0

If A is successful, alpha for B becomes 0 +1*0.05 = 0.05.
Then, if B is successful alpha for C is 0.05. But, if anytime, 
a test is not significant there is no further test

Huque 2015
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Drawback of the FS method 
• If a hypothesis in the sequence is not rejected 

then a statistical conclusion cannot be made for  
the subsequent hypotheses, even if they have 
extremely small p-values.  

– Suppose, for example, that in a study the p-value for 
the first hypothesis test in the sequence is p = 0.250, 
and the p-value for the second hypothesis test is p = 
0.00001.

– Despite the apparent “strong” finding for the second 
hypothesis, no formal favorable statistical conclusion 
can be reached for this hypothesis.  

Huque 2015
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Fallback method and its graphical 
representation 

A B

α1 = 0.03 α2 = 0.01
1 1

C

α3 = 0.01

If A is successful, alpha for B becomes 0.01 +1*0.03 = 0.04,
and if B is also successful, then test for C is at level 0.05
(This test strategy is known as the fallback method)

Reference: Brian Wiens (2003)
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Extension of the fallback method
(Bretz et al.; 2009)

A B

α1 = 0.03 α2 = 0.01

1 1
C

α3 = 0.01

1-r

r

Consider the situation: A and B both fail but C is 
successful

Then A and B can be retested at slightly higher levels

0 ≤ r ≤ 1

Huque 2015
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A B

α/2 α/2

1

1

C

α-exhaustive nature of the Holm’s 
method 

0

A B C

α/2 α/23/4

3/4

1/4

1/4
A C

7α/8
α/8

1

After B is successful

Truncation of the Holm’s test for the primary family
0

Dmitrienko et al. 2008; Bretz et al. 2009

C can be tested
only when both
A and B are
successful 
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Regular Holm test with K =3

p(1) < α/3 H(1)

Yes
H(1), H(2),

H(3)

Reject Failed to reject
No

p(2) < α/2

Failed to reject

H(2), H(3)

No
H(2)

Reject
Yes

p(3) < αH(3)

Failed to reject
No

H(3)

Reject

Ordered p-values of p(1) ≤ p(2) ≤ p(3)
Associated hypotheses H(1), H(2), H(3)
Start from the top with the smallest p-value p(1) then step-down

Yes
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Truncated Holm test for testing k hypotheses 
(Dmitrienko et al., 2008)

• The truncated Holm test allows passing of alpha from one 
family to the other, but the calculation of un-used alpha is 
different than that by the Bonferroni based method 

• In the truncated Holm, the critical values for tests are 
convex combinations of the critical values of the original 
Holm test and that of the Bonferroni test 

ci = θ(α/(k – i + 1)) + (1- θ)(α/k),          (i =1, …, k)
where, 0 ≤ θ ≤ 1 is known as the truncation fraction.

– At θ = 0, this construct gives the Bonferroni alpha-critical 
value of α/k. 

– The actual procedure for the truncated Holm remain the 
same, except that the above new critical values ci are 
used 
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Truncated Holm test for the primary family; 
K =2, θ =3/4 

• Family 1 test (assume truncation fraction θ =3/4):

Reject H(1) if p(1) < c1= α/2, otherwise, stop testing

Reject H(2) if p(2) < c2 =(1 + θ)α/2 =(7/8)α after rejecting 
H(1), otherwise, stop testing

• Alpha remained for the Family 2 is:

 All α when in Family 1 all null hypotheses are 
rejected

 α – c2 = (1 − 7/8)α = (1/8)α when in Family 1 H(1) is 
rejected but H(2) is retained 
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Graphical representation: truncated Holm test 
for the primary family; K =2 and θ=3/4 

A B C

α/2 α/23/4

3/4

1/4

1/4

A C

7α/8 α/8
1

After B is successful

0
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Truncated Holm test for the primary family;
K =2 and θ=1/2 

• Family 1 test (assume truncation fraction θ =1/2):

Reject H(1) if p(1) < c1= α/2, otherwise, stop testing

Reject H(2) if p(2) < c2 =(1 + θ)α/2 =(3/4)α after rejecting 
H(1), otherwise, stop testing

• Alpha remained for Family 2 is:

All α when in Family 1 all null hypotheses are rejected

α – c2 = (1 − 3/4)α = (1/4)α when in Family 1 H(1) is 
rejected but H(2) is retained 
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Graphical representation: truncated Holm test 
for the primary family; K =2 and θ=1/2 

A B C

α/2 α/21/2

1/2

1/2

1/2

A C

3α/4 α/4
1

After B is successful

0
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Truncated Holm test, K =3 (primary family)

• Family 1 test:
1) Reject H(1) if p(1) < c1= α/3, else stop testing
2) Reject H(2) if p(2) < c2 =(θ + 2)α/6 after rejecting H(1), 

else stop testing, and
3) Reject H(3) if p(3) < c3 = (2θ + 1)α/3 after rejecting H(1)

and H(2).
• Alpha saved for Family 2 is:

a) All α when in Family 1 all null hypotheses are rejected
b) α – 2c2 = (1 − θ )α/3 when in Family 1 H(1) is rejected 

but H(2) and H(3) are retained 
c) α – c3 = 2(1 − θ )α/3 when in Family 1 both H(1) and 

H(2) are rejected but H(3) is retained 
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An illustrative example
• Consider treatment-to control comparisons on three 

endpoints in the primary family with the control of alpha at 
the 0.05 level. 
– Test critical values for the conventional Holm are: 0.05/3, 

0.05/2, and 0.05, and those for the equally weighted 
Bonferroni method are 0.05/3, same for each comparison 

– The endpoint-specific alpha levels for the truncated Holm 
with a “truncation fraction” of θ =1/2 are:

α1 = (0.05/3) θ + (0.05/3)(1- θ) = 0.0167 (same as 0.05/3)

α2 = (0.05/2) θ + (0.05/3)(1- θ) = 0.0208 (instead of 0.05/2)

α3 = (0.05)θ + (0.05/3)(1- θ) = 0.0333 (instead of 0.05)
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An illustrative example (cont’d)

• The unused alphas for passing to secondary family 
are:

(i) 0.05 if all three tests are successful

(ii) (0.05 - α3 ) = 0.05 – 0.0333 = 0.0167, if the 1st two 
tests are successful but the last one is not

(iii) (0.05 - 2 α2) = 0.05 – 2(0.0208) = 0.0084, if the 1st

test is successful but the other two are not.
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Hochberg procedure with K =3

p(1) < α/3 H(1)

No

H(1),

Failed to reject 
Reject

Yes

p(2) < α/2

Reject

H(1), H(2)

Yes
H(2)

Failed to reject

No

p(3) < αH(1), H(2),
H(3)

Reject

Yes
H(3)

Failed to reject

Ordered p-values of p(1) ≤ p(2) ≤ p(3)
Associated hypotheses H(1), H(2), H(3)

No

Start from the bottom with the largest p-value p(3) then step-up



Why consider the HP for confirmatory trials?
• Consider for example 1-sided treatment effect p-values 

of 0.013 and 0.022  on two primary endpoints of a trial 
designed to compare a new treatment to control.  

• One would normally consider such results as  acceptable 
as evidence of treatment effects on the two endpoints, if 
the procedure employed controls FWER at level 0.025 in 
the strong sense.  

• Thus, if such results can win the trial, then the use of the 
Bonferroni and the Holm procedures would be unwise, 
as these procedures would consider such results as 
statistically not significant and would fail the trial.

52Huque 2015
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Comments for the HP 
• It is NOT assumption-free like the Bonferroni and Holm 

tests.
– It provides adequate FWER control for independent and 

for certain types of positively correlated tests (Sarkar 
and Chang, 1997; Sarkar, 1998), but its properties for 
other types of dependent endpoints are not fully known 
for more than 2 hypotheses tests . 

– It provides adequate FWER control for testing 2 null 
hypotheses, when test statistics follow bivariate normal, 
or bivariate t, or 1-df chi-square distributions with 
positive correlations. 

References: Sarkar & Chang (1997); Samuel-Cahn 
(1996); Huque (SIM 2015)



Comments for the HP (cont’d)

• Similar to Holm, HP is α-exhaustive  

– This means that in testing the primary family of null 
hypotheses of a trial, it is not able to release any 
alpha for tests for the secondary family of null 
hypothesis of a trial, unless all null hypotheses in this 
first family are first rejected.  

• However, the truncated HP can be used for the primary 
family if the desire is also to test the secondary family

• The method of truncation for the HP is the same as that 
for the Holm (Dmitrienko et al 2008)  

54Huque 2015
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Closed testing procedure (CTP) 
• Given h elementary hypotheses H1, …, Hh , the CTP 

considers the 2h -1 intersection hypotheses:

HF = ∩iϵF Hi  where F stands for I = {1, …, h} and all 
subsets F of I 

For example, given h =3 hypotheses H1, H2, and H3, 

HF ε{H1∩H2∩H3, H1∩H2, H1∩H3, H2∩H3, H1, H2, H3}

• Test Procedure: 
o Test each HF at level α or less 
o Reject HF if and only if HF and all higher order 

interaction hypotheses that include HF are rejected at 
level α or less

Huque 2015
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Closed testing procedure (CTP) 
• For example, consider 3 hypotheses H1, H2, and H3. 

Then in order to reject H1 , one has to reject all the 4 hypotheses:

H1∩H2∩H3, H1∩H2, H1∩H3 and H1, testing each at the same 
significance level α

• Thus, an individual null hypothesis Hi is rejected at level 
α if and only if every intersection hypothesis HF that 
includes Hi (including Hi itself) is rejected at level α.

• Note: for h =3, if for example, H1 is rejected, then to reject 
H2, one has to  test only H2∩H3 and H2, each at level α. 
Further, if both H1 and H2 are rejected, then one has to 
simply test H3 at level α

• The CTP strongly controls FWER≤ α (Marcus et al., 1976). 
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“Consonance” property 

• Consonance Property (Gabriel, 1969):
– The rejection of an intersection hypotheses implies the 

rejection of at least one of its elementary hypotheses

– For example, if HF = ∩iϵF Hi  is rejected at level α, then 
elementary hypotheses Hi are rejected at level α for at least 
for one i ϵF 

• Shortcuts to the CTP occur if this property holds 
(Hommel et al., 2007)

 Sequentially rejective (SR) graphical procedures 
are (implicitly) related to CTPs that satisfy this 
property
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CTP with 2 hypotheses and it connection to 
α-recycling and the graphical method

• Closed testing considers {H1 ∩H2, H1 and H2}
• Suppose we use Bonferroni test for H1 ∩H2 . That is, reject        

H1 ∩H2 if unadjusted pj < α/2 for some j ε {1, 2}. 
• Suppose that H1 ∩H2 is rejected for j =2. Then by the 

consonance property of the test for H1 ∩H2 , the hypothesis H2 is 
rejected 

• Consequently, by the CTP, the test for H1 is at level α and not at 
level α/2. 

• The above procedure can, therefore, be represented graphically 
as: 
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H1 H2

α/2 α/21

1
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CTP with weighted Bonferroni tests for 
intersection hypotheses

• Consider h elementary hypotheses H1, …, Hh

• I = {1, …, h}. For F = I and for any subset F of I 
consider intersection hypotheses:

HF = ∩iϵF Hi  with weights wi(F) associated with Hi
for iϵF so that ∑ iϵF wi(F)≤ 1

• Reject HF if pi  < wi(F)α for some iεF. (Weighted-
Bonferroni test for HF)

• Example: (next slide)
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CTP with weighted Bonferroni tests for 
intersection hypotheses

• Example: Consider 3 hypotheses H1, H2, and H3

60

HF

H1
w1

H2
w2

H3
w3

Reject HF
If

H123
H12
H13
H1
H23
H2
H3

0.6
0.8
0.7
1.0
-
1
-

0.3
0.2
-
-
0.3
-
-

0.1
-
0.3
-
0.7
-
1

pi < wi(H123)α for some i ε {1, 2, 3}
pi < wi(H12)α for some i ε {1, 2}
pi < wi(H13) α for some i ε {1, 3}
p1 < α
pi < wi(H23) α for some i ε {2, 3}
p2 < α
p3 < α

Note: H123 = H1 ∩ H2 ∩ H3; H12 = H1 ∩ H2; H13 = H1∩ H3; H23 = H2 ∩ H3
Such a table for CTP was introduced by Dmitrienko et al. (2003) 
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CTP with Bonferroni tests with weights (BWS) 
that satisfy consonance

• If in addition, for any intersection hypothesis HF* = ∩iϵF* Hi , 
weights wi(F*) with ∑ iϵF* wi(F*)≤ 1 satisfy the following 
condition

wi(F*)≥ wi(F) for every subset F* of F (A)

• Note that in the previous weighting scheme this condition 
is not satisfied

 The Bretz et al. (2009) graphical approach satisfies 
this condition for all intersection hypotheses HF .
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Example 3 : H1 and H2 are primary hypotheses 
and H3 is the secondary 

Test H1 ∩ H2 ∩ H3 at level α (by the 
weighted Bonferroni  method)

Test H1 ∩ H2 at level α Test H1 ∩ H3 at level α Test H2 ∩ H3 at level α

Test H1 at level α
if both H1 ∩ H2  and H1 ∩ H3
are rejected 

Test H2 at level α
if both H1 ∩ H2 and H2 ∩ 
H3 are rejected

Test H3 at level α
if both H1 ∩ H3
and H2 ∩ H3 are rejected

If  Reject 
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Bonferroni weights:
(w1, w2, 0), w1,+w2=1
0<(δ1,δ2)<1 

(w1, w2) (w1+δ2w2, (1-δ2)w2) (w2+δ1w1, (1-δ1)w1)

(1) (1) (1)

NOTE: H3 is tested only when at least one primary hypothesis is rejected



CTP Table (Example 3) with BWs satisfying 
consonance

Hypotheses H1 H2 H3

H123

H12

H13

H1

H23

H2

H3

w1

w1

w1+δ2w2

1

-

-

-

w2

w2

-

-

w2+δ1w1

1

-

0

0

(1-δ2)w2

-

(1-δ1)w1

-

1
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Graphical representation of the CTP Table 

H1 H2

H3

w1 w2

0

δ1

δ2

1-δ2

1-δ1

H2 H3

w2 +δ1w1 w1(1-δ1)
1

Original graph (A)

Graph after rejecting H1 in (A)

H1 H3

w1 +δ2w2 w2(1-δ2)
1

Graph after rejecting H2 in (A)

Transition matrix of g-values in (A) 
g12 = δ1, g13 =1-δ1;
g21 =δ2,  g23 =1-δ2; g31=g32 =0
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Calculation of g-values after rejecting a 
hypothesis 

Transition matrix g-values (original graph): 
g12 = δ1, g13 =1-δ1;
g21 =δ2,  g23 =1-δ2; g31=g32 =0

Method for calculating new g-values after rejection 
of the hypothesis Hj: 

glk(new) = (glk(old) + glj*gjk)/(1-glj*gjl)

Example after rejecting H1 : 

g23 = {g23(old) = (1-δ2) + g23 (going through 
H1) = δ2(1-δ1)}/{(1- g21x g21)=(1-δ1δ2)} =1 
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H1 H2

H3

w1 w2

0

δ
δ

1-δ1-δ

01

Original graph (A)

After rejecting H2 and H4

H2 H41 01
After rejecting H1 and H3

H4 0

11

H1

H3 H4

w1+δw2

w2(1-δ)

0

After rejecting H2

1-δ

1/(1+δ) 1

δ/(1+δ)

H3

(w1 +δw2)/(1+δ)
After rejecting H1 and H2

H4

(w2 +δw1)/(1+δ)
1

1

1

H1 H3
1

H2

H4H3

w2+δw1

w1(1-δ)
1-δ

δ/(1+δ)

1
0

1/(1+δ)

After rejecting H1

1

Example 4: (H1,H2) primary, (H3,H4) secondary

Note: (H1,H3) and (H2,H4) 
are descending hypotheses pairs
(Method: Weighted Bonferroni)

δ

δ



CTP Table with the consonance property 
(Example 4, using weighted Bonferroni)
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Hypotheses H1 H2 H3 H4
H1234
H123
H124
H134
H12
H13
H14
H1
H234
H23
H24
H2
H34

H3
H4

w1
w1
w1

w1+δw2
w1
1

w1+δw2
1
-
-
-
-
-

-
-

w2
w2
w2
-

w2
-
-
-

w2+δw1
w2+δw1

1
1
-

-
-

0
0
-
0
-
0
-
-

w1(1-δ)
w1(1-δ)

-
-

(w1 + δw2)/ 
(1+δ)

1
-

0
-
0

w2(1-δ)
-
-

w2(1-δ)
-
0
-
0
-

(w2 + δw1)/ 
(1+δ)

-
1
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Weighted parametric tests for greater power
• Weighted parametric methods can be used to increase 

power of the test procedure whenever the joint 
multivariate distribution of the test statistics is known. For 
this case, one can reject the intersection hypothesis

HF = ∩jϵF H, if pj ≤ cFwj(F)α for some jϵF

where cF ≥ 1 is the largest constant satisfying

Pr(UjϵF {Pj ≤ cFwj(F)α}| HF) ≤ α
• If the joint multivariate distribution of the test statistics is 

not fully known, still it is possible to derive conservative 
upper bounds of the rejection probability for 
improvements over the Bonferroni approach
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Example 5
• Consider a 2-arm targeted subgroup trial design which 

allocates a proportion K= 0.5 of the total trial sample to a 
targeted subgroup.  

– The interest is to show benefit of the study treatment 
(in comparison to a control) on a primary and a 
secondary endpoint either for the overall patient 
population (OPP) or for the targeted subgroup (TSG). 

• Consider 4 test statistics (corresponding to 4 null 
hypotheses) whose joint distribution is multivariate 
normal N4(0, R) which is not fully known 
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Example 5 (cont’d)

Primary endpoint tests
• Z0 = test statistic for the  

OPP
• Zs = test statistics for the 

TSG
• (Z0, Zs) is bivariate 

normal with ρ=√K = 
0.7071 , when the fraction 
K in TSG = 0.5

Secondary endpoint tests
• U0 = test statistic for the  

OPP
• Us = test statistics for the 

TSG
• (U0, Us) is bivariate 

normal with ρ=√K = 
0.7071 , when the fraction 
K in TSG = 0.5
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The bivariate joint distribution of 2 test statistics within each 
family is fully known, but N4(0, R) across all 4 test statistics are 
not fully known. 



Example 5 (cont’d)

• Consider the intersection hypothesis HF = ∩jϵF H, , and 
say F=I = {1, 2, 3, 4}, then 
Pr(UjϵF {Pj ≤ cFwj(F)α}| HF) ≤ 

Pr(Ujϵ{1,2} {Pj ≤ cFwj(F)α} + Pr(Ujϵ{3,4} {Pj ≤ cFwj(F)α}
• Therefore a conservative cF value for this F can be 

obtained on setting the above upper bound to α. For this 
example, this c{1,2,3,4} =  1.1754

• Similarly, for F= {1, 2, 3}, its c{1,2,3}can be conservatively 
obtained for this example from the equation:

Pr(Ujϵ{1,2} {Pj ≤ cFwj(F)α} + Pr(P3 ≤ cFwj(F)α} = α

• Therefore, one can construct the CTP table with  
w1=w2=1/2, and w3=w4=0, as in the next slide
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CTP Table with the consonance property 
(Example 5)
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Hypo
theses

H1 H2 H3 H4

H1234
H123
H124
H134
H12
H13
H14
H1
H234
H23
H24
H2
H34
H3
H4

0.5877
0.5877
0.5877
0.75

0.5877
1

0.75
1
-
-
-
-
-
-
-

0.5877
0.5877
0.5877

-
0.5877

-
-
-

0.75
0.75

1
1
-
-
-

0
0
-
0
-
0
-
-

0.25
0.25

-
-

0.5877
1
-

0
-
0

0.25
-
-

025
-
0
-
0
-

0.5877
-
1
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H1 H2

H3

1/2 1/2

0

δ=1/2
δ=1/2

1-δ1-δ

01

Original graph (A)

After rejecting H2 in H4

H2 H41 01
After rejecting H1 and H3

H4 0

11

H1

H3 H4

w1+δw2=3/4

w2(1-δ)=1/4

0

After rejecting H2

1-δ

1/(1+δ)
=2/3 1

δ/(1+δ)=1/3

H3

(w1 +δw2)/(1+δ)=1/2
After rejecting H1 and H2

H4

(w2 +δw1)/(1+δ)=1/2
1

1

1

H1 H3
1

H2

H4H3

w2+δw1=3/4

w1(1-δ)=1/4

1-δ

δ/(1+δ)=1/3

1
0

1/(1+δ)
=2/3

After rejecting H1

1

Example 5: Graphical representation
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Testing for the parametric approach (Bretz et 
al., 2011) and cautionary remark 

• Testing (graphical approach):
(1) Start with F=I (considering all 4 null hypotheses) and 

find cF
Reject  Hj if pj ≤ cFwj(F)α. Suppose Hj is rejected.

(2) Descend to F = I \{j} after rejecting Hj

Reject Hi if pi ≤ cFwi(F)α,for iϵF = I \{j}
(3) Continue descending as in (2) till there is no rejection

• Caution: The above sequentially-rejective graphical 
approach is not valid for all δ. For Example 3, consonance 
property fails for 0 ≤ δ < 0.1754.  However, the CTP is 
valid for all δ.
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Sequentially rejective graphical approach 
using Simes tests for greater power

• For testing any intersection hypothesis HF = ∩jεFH, 
weighted Simes test is uniformly more powerful than the 
corresponding weighted Bonferroni test. 

– If HJ is rejected by the weighted Bonferroni test then it 
is also rejected by the Simes test; the latter rejects 
more hypotheses 

• However, CTP with Simes test does not satisfy the 
consonance property, as such, the usual sequentially 
rejective graphical approach is not possible.
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Sequentially rejective graphical approach 
using Simes tests (cont’d)

• Nonetheless, Bretz et al. (2011) show that CTP with 
Simes test partially satisfies the consonance property. 

• Consequently, they propose a 2 step procedure: 
– The first step uses the weighted Bonferroni based 

sequentially rejective graphical method for rejecting 
hypotheses that can be rejected by this method.

– The second step is then uses the sequentially 
rejective graphical method on the remaining non-
rejected hypotheses using the weighted Simes test 
with the weights originally assigned to these non-
rejected hypotheses by the Bonferroni procedure. 
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Caveats for the Simes test
• Simes test is not assumption free and raises issues for 

clinical trial applications
• Sarkar (1998), Sarkar & Chang (1997) work show that

– Simes test is a valid test if the joint distribution of the test 
statistics follow a standard multivariate normal with all 
correlations equal and non-negative. 

– It is also a valid test if the joint distribution of the test statistics 
that follow a multivariate t-distribution of Dunnett and Sobel 
(1954)

– It is also a valid test for chi-square tests for the above normal 
distribution 

• Various simulation results seem show that Simes test is 
also a valid test for multivariate normal with non-negative 
correlations
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Concluding Remarks - Part I
• For confirmatory trials, statistical approaches need to consider 

their hierarchical structures of test hypotheses and their 
families  for gaining efficiency and optimizing power for the 
primary hypotheses

• In these approaches, for making conclusions at the individual 
hypotheses levels, strong sense FWER control is needed 
across both the primary and secondary families of 
hypotheses.   

• Two key statistical approaches for this have been developed 
that apply to  confirmatory clinical trials
a) Gatekeeping approaches  (see FDA tutorial, 2014 BASS)

b) SR graphical methods  (topic of this session)
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Concluding Remarks - Part I (cont’d)
• Both the gatekeeping and graphical approaches can handle 

the following two cases:

a) Primary hypotheses tests do not depend in any way on 
the results of the secondary hypotheses test results

b) Primary hypotheses can be re-tested on recycling some 
alpha from the test results of the secondary hypotheses 

• Both approaches for greater power can account for 
correlations between endpoints with some modifications 
when these correlations can be pre-specified.

• The graphical method is (implicitly) related to the CTP with 
Bonferroni weights.
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Outline (Part II)  
• Brief introductions on B-values and Z-scores used in GS 

(Group Sequential) test procedures and on α-spending 
functions (Ref: Proshan, Lan and Wittes; 2007)

• GS test procedures for testing multiple hypotheses 
o Methods based on the Bonferroni inequality

o Method based on the CTP (Tang & Geller, 1999)

o The case of testing 2 hypotheses 

o The general case of testing multiple hypotheses on using the 
graphical method (Maurer & Bretz, 2013) 

• Example of a GS trial design for testing a primary and a 
secondary endpoint of a trial

• Concluding remarks (Part II)
80
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B-values and Z-scores
• Consider a 2-arm trial which is designed with a total sample 

size of N subjects per treatment arm 

• Let Sn1 = the sum statistic for treatment difference at an interim 
look #1 based on a sample size of n1 subjects per treatment 
arm

• Define: B(t1) = Sn1/(VN )1/2  where VN = Var(SN)= 2Nσ2

• Then 

Var {B(t1)} = n1/ N = t1 (information fraction at look #1)

Z(t1) = (Sn1/√Vn1)= (Sn1/√VN) (VN /Vn1 )1/2 = B(t1)/(t1)1/2

(because Var(Sn1)= 2n1σ2 and VN /Vn1 = 1/ t1)
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B-values and Z-scores

• Consider now the 2nd look with sample size of 

n2 = n1 + r (per treatment arm)

• Then

B(t2) = Sn2/√VN = (Sn1+ Sr )/√VN  

• Consequently, 

Var {B(t2)} = t2, Cov{B(t1),B(t2))= t1 and 

Corr{B(t1), B(t2)}= (t1/ t2)1/2  for t1≤ t2
Corr{Z(t1), Z(t2)}= (t1/ t2)1/2  for t1≤ t2
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Joint distributions
• Given t1 ≤ t2 ≤ …. ≤ tk , if assume that B(t1), B(t2), …, B(tk) 

jointly follow a multivariate normal distribution, then 

E{B(tj)}=0 under H0; Cov{B(ti),B(tj)} = ti for ti ≤ tj

• Also, Z(tj) = B(tj)/tj1/2 is the Z-score corresponding to B(tj) 

• Further, Z(t1), Z(t2), …, Z(tk) jointly follow a multivariate 
normal distribution with 

E{Z(tj)}=0 under H0; Cov{Z(ti), Z(tj)}= (ti /tj )1/2 for ti ≤ tj
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Expected values of B(tj) and Z(tj) 
• E{B(tj)} = njδ/{2Nσ2}1/2 =(nj /N){(N/2)1/2δ/σ}

= tjθ, where θ = (N/2)1/2δ/σ
• This θ is usually called the drift parameter

Note that for a fixed sample trial design θ = Z1-α + Z1-β .
For example, if α = 0.025 and power = 90%, then θ =
3.2415 

• E{Z(tj)}= E{B(tj)}/(tj)1/2 =(tj)1/2 θ

• The book (by Proshan, Lan Wittes; 2007) shows how the 
different GS methods use B and Z-statistics and their 
distributions to set-up GS-boundaries. 
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α-spending functions
• Lan and DeMets (1983) introduced the concept of α-

spending functions. They showed methods for 
construction GS boundaries that do not require pre-
specifying the number or timing of the looks. 

• Any non-decreasing function f(α, t) in the information 
time t (0 ≤ t ≤ 1) parametrized by the overall significance 
level α can be an α-spending function if it satisfies the 
following conditions:
1) f(α, t) ≤ f(α, t’) for 0 ≤ t < t’ ≤ 1
2) f(α, 0) = 0
3) f(α, 1) = α
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Examples of α-spending functions

• OF-like:

f1(α, t) = 2[1-Φ(z1-α/2/t1/2)], 

where z1-α/2 is the deviate on the standard normal 
density curve so that area under the curve to the tight of 
it is α/2

• Linear: f2(α, t) = αt

• PK-like: 

f3(α, t) = α loge{1+(e -1)t}

• Hwang-Shih-Decani (1990): 

f4(α, t) = α{1- exp(-λt)}/{1- exp(-λ)}
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Calculation of boundary values using the OF-
like  α-spending function

• Given an α-spending function, one needs to find the nominal 
significance level αt(α) at information time t so that H0 is 
rejected when pt at information time t is smaller than αt(α) . 
We show as an example how to find this for the OF-like alpha 
spending function.

• Suppose that α = 0.025 and the 1st look occurs at t1 = 0.30.  

• We spend f1(α, 0.30) = 2[1-Φ(z1-α /2/(0.30)1/2)]= 2[1-
Φ(2.2414027 /(0.30)1/2)]= 0.0000427. 

• Therefore, critical value C1= 3.9285725 form Pr(Z(t1) > C1) 
= 0.0000427. 

• We reject H0 if p1 > α1(α) = 0.0000427 or Z(t1) > C1= 
3.9285725 87



Calculation of boundary values using an α-
spending function (cont’d)

• Suppose the H0 is not rejected at the 1st look and the 2nd look 
occurs at t = 0.65.

• The cumulative type I error rate by t = 0.65 is   

• f1(α, 0.65) = 2[1-Φ(z1-α/2/(0.65)1/2)]= 2[1-Φ(2.2414027 
/(0.65)1/2)]= 0.0054339. 

• We determine the boundary C2 by solving the equation: 
Pr{(Z(t1) > 3.9285725)U(Z(t2) >C2)} = 0.0054339.

• Therefore, C2 = 2.5479 and α2(α) = 0.0054187 

• We reject H0 if p2 > α2(α) = 0.0054187 or Z(t2) > C2= 2.5479
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Calculation of boundary values using an α-
spending function (cont’d)

• Suppose that H0 is not rejected at the 2nd look and the 
trial moves to the final look at t = 1

• The cumulative type I error rate by t = 1 is  0.025 

• f1(α, 1) = 2[1-Φ(z1-α/2]= α = 0.025. 

• We determine the boundary C3 by solving the equation: 
Pr{(Z(t1) > 3.9285725)U(Z(t2) > 2.5479)U(Z(t3) > C3)} = 
0.025.

• Therefore, C3 =  1.9897 and α3(α) = 0.023312

• We reject H0 if p3 > α3(α) =0.0233, or Z(t3) > C3= 1.9897.
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A general recursive formula for calculations 
of cj and αj values 

90

Free software for calculations from: ww.medsch.wisc.edu/landemets/
There are other software, e.g., East 6.3
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Results from the East 6.3 software
on using the OF-like α-spending function

Look # Information
fraction

Cumulative 
α spent 

Efficacy 
boundary

1 0.30 0.00004 0.00004
2 0.65 0.00543 0.00542
3 1.00 0.025 0.02331
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Overall α = 0.025
Look # Information

fraction
Cumulative 
α spent 

1 0.30 0.00004
2 0.65 0.00543
3 1.00 0.025

Look # Information
fraction

Cumulative 
α spent 

Efficacy 
boundary

1 0.30 0.00001 0.00001
2 0.65 0.00194 0.00194
3 1.00 0.0125 0.01188

Look # Information
fraction

Cumulative 
α spent 

1 0.30 0.00004
2 0.65 0.00543
3 1.00 0.025

Overall α = 0.0125
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GS testing for multiple endpoints of clinical 
trials

• Methods based on the Bonferroni inequality

• CTP based procedure (Tang & Geller, 1999)

• Alpha-recycling method for the case of testing 2 
hypotheses 

• Alpha-recycling method for the general case using the 
graphical approach (Maurer & Bretz, 2013) 
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Methods based on the Bonferroni inequality

1) Given h hypotheses H1, …, Hh , assign significance 
level of αj for each Hj so that the sum

α1 + α2 + …+ αh = α.
Then apply univariate GS testing method to each Hj (Jennison & 
Turnbull, 2000)

2) Pre-specify Bonferroni based rejection boundary αt for t
= 1, …k, so that the sum

α1 + α2 + …+ αk = α
Then at each time t apply a multiple testing procedure to h
hypotheses. The resulting procedure protects FWER over all 
hypotheses and time points. (Maurer & Bretz, 2013)
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CTP based test procedure (Tang & Geller, 
1999)

• Consider testing h hypotheses, and let  I = {1, …, h}.  
Consider 

F = I or any non-empty subset of I, and 

HF = ∩jϵF Hj be the intersection hypothesis, i.e., 
treatment difference δj = 0, for jϵF 

• Consider a group sequential trial with k looks at information 
times t = t1, …, tk
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CTP based test procedure (Tang & Geller, 
1999)

• Let

ZF = test statistic used for testing HF 

ZF, t = test statistic ZF calculated at information time t

cF, t for (t = t1, …, tk) are one-sided GS boundary values 
for testing HF , determined so that

Pr {ZF, t > cF, t for some t | HF } ≤ α

• The GS test procedure can then be stated as in the next 
slide
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CTP based test procedure (Tang & Geller, 1999) 

• Step 1: Conduct interim analyses to test HI based on the 
group sequential boundary {cI, t , t = t1, …, tk} using ZI, t 

• Step 2: When HI is rejected, say at time t = t* , apply the CTP 
to test the other hypotheses HF using ZF, t* with cF, t* as the 
critical value 

• Step 3: If any hypothesis is not rejected, continue the trial to 
the next stage, in which the closed testing is repeated (with 
the previously rejected hypotheses automatically considered 
rejected w/o retesting)

• Step 4: Reiterate Step 3 until all hypothesis are rejected or 
the trial reaches the last stage k
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Tang & Geller procedure simplifies when using 
BWs that satisfy consonance property

• If the CTP with Bonferroni weights satisfies consonance 
property and the alpha-spending function satisfies 
certain condition, then the Tang & Geller CT based 
procedure enjoys certain key benefits:

a)Allows construction of SR (graphical) testing procedures 
which lead to recycling of alpha form one hypothesis to 
another in a  manner as shown in Maurer and Bretz (2013)

b)Existing software can be used to finding nominal 
significance level for the test of each hypothesis at each 
interim look so that FWER of the procedure is controlled at 
level α ( e.g., for α = 0.025 for 1-sided tests)
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Recall: Test for intersection hypotheses with 
Bonferroni weights in the CTP

• Consider intersection hypotheses HF = ∩iϵF Hi ,

where F = I = {1, …, h} or F is a subset of I

and h is number of hypotheses tested 

Assign weights wi(F) for iϵF so that ∑ iϵF wi(F)≤ 1

Reject HF if pi  < wi(F)α for some iϵF. 
• Consonance property is satisfied if in addition, for any 

intersection hypothesis HF* = ∩iϵF* Hi , with weights wi(F*) 
and ∑ iϵF* wi(F*)≤ 1 satisfy the following condition

wi(F*)≥ wi(F) for every subset F* of F
. 98Huque 2015



First consider the case of testing 2 
hypotheses in a non-GS setting

• CTP considers hypotheses: H1∩H2, H1 and H2, one 
intersection and two singleton hypotheses

• Consider HF =  H1∩H2, F ={1,2}. Assign weights:
w1(F) = 0.8, and w2(F) = 0.2, so that
w1(F)α = 0.8 x 0.025 = 0.02, and w2(F)α = 0.2 x 0.025 = 0.005

• Consonance property is satisfied; because, if HF is rejected 
then each of the two singleton hypothesis will be tested with 
weight =1, i.e., at the full significance level of 0.025. 

• SR procedure applies, for example, if pi < wi(F)α for i =1, 
then H1 is rejected; consequently, and H2 can be tested 
at the full significance level, i.e., there is recycling of 
alpha from H1 to H2.
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Case of testing 2 hypotheses in the GS setting 

• Suppose that the first interim look is at t =t1 at which 
time the unadjusted p-values are p1,t1 and p2,t1 , then one 
would reject HF =  H1∩H2, where F ={1,2}, if 

p1,t1 < α1,t1 (w1(F)α, t=t1)   or p2,t1 < α2,t1 (w2(F)α, t=t1) 

• Where the boundary critical value α1,t1 is now obtained 
using the alpha-spending function f1(γ, t) at f1(γ= w1(F)α, 
t=t1). Similarly, α2,t1 is obtained using the spending 
function f2(γ, t) at f2(γ= w2(F)α, t=t1). 
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Case of testing 2 hypotheses in the GS setting
(cont’d) 

For example, if w1(F) = 0.8, w2(F) = 0.2, and α = 0.025. 
Then from the OF-like spending function at t1=0.30,

α1,t1 = 0.00002   and α2,t1 = 2.977E-07

• Suppose that HF is not rejected at t =t1 then one 
proceeds to the interim look at t=t2 (e.g., t2 = 0.65).
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Case of testing 2 hypotheses but in the GS 
setting (cont’d)

• At the second interim look t =t2  one would similarly 
calculate unadjusted p-values are p1,t2 and p2,t2 , and would 
reject HF =  H1∩H2, where F ={1,2} if 

p1,t2 < α1,t2 (w1(F)α, t=t2)   or p2,t2 < α2,t2 (w2(F)α, t=t2) 

• Where the boundary critical value α1,t2 is now obtained 
using the spending function f1(γ, t) at f1(γ= w1(F)α, t=t2). 
Similarly, α2,t2 is obtained using the spending function f2(γ, 
t) at f2(γ= w2(F)α, t=t2). 
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Case of testing 2 hypotheses but in the GS 
setting (cont’d)

• For example, with the same w1(F) = 0.8, w2(F) = 0.2, 
and α = 0.025, from the O-F-like spending function at 
t2=0.65,

α1,t2 = 0.0039       and α2,t2 = 0.000498

• Suppose that HF is now rejected, say, at t =t2 for i = 2, 
where iεF ={1,2}. Then things happens
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Case of testing 2 hypotheses but in the GS 
setting (cont’d)

• Since HF is rejected at t =t2 for i = 2, then because of 
consonance of the CTP H2 is rejected. Therefore, at t
=t2, CTP allows testing H1 at the updated level α*1,t2 (α) 
with the transfer of  weight of w2(F) at H2 to H1 with the 
total weight at H1 being w2(F) + w1(F) =1. 

• Consequently, α*1,t2 (α) = 0.00542 is now obtained 
using the α-spending function f1(γ, t) at f1(γ= α, t=t2). 

• Thus, there is recycling of alpha similar to that for the 
non-GS setting, but for the GS  setting, it occurs 
through the α-spending function from one hypothesis to 
the another if one of them is rejected
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Case of testing 2 hypotheses but in the GS 
setting (cont’d)

• Suppose now that H1 at t =t2 when tested at level α*1,t2 (α) 
is not rejected, then one would proceed to interim look t = 
t3 to test H1 with the assumption that H2 remains rejected 
at t3.  

• Therefore, at t3 (i.e., the final look), H1 would be tested at 
level α*1,t3 (α) = 0.02331
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Key points

• Note that in the previous slide at t =t2 after H2 is 
rejected, H1 is tested at level α*1,t2 (α), and not at level α.
After success on one hypothesis, wrongfully testing  the other 
hypothesis at the full level α can inflate the FWER. 

Instead, one needs to calculate and use α*1,t2 (α) by a standard 
software such as East 6.3 using a pre-specified α-spending function

• The spending function applied needs to satisfy the   
following condition:
The difference function f (γ, tj) - f(γ, tj-1) is monotonically non-
decreasing in γ for j = 1, …, k

OF-like alpha spending function satisfies this condition
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Graphical algorithm by Maurer & Bretz (2013) 
for the general case

o Set t =t1 (1st interim look), I = {1, 2, …, h), and weights 
wi(I) for iϵI

1) At interim look t, calculate p-values pi,t and boundary 
critical values αi,t for i ϵ I on using alpha of wi(I)α

2) Find a j ϵ I such that Hj is rejected on observing pj,t < αj,t ; 
go to Step-3. If no such j exists and t < tk, then go to 
Step-1 but at t = tu (the next look, u = 1, .., k)

3) Update the graph:  
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Graphical algorithm by Maurer & Bretz (2013) 
for the general case (cont’d)

3) Update the graph:  
I = I \{j}
New wl (I) = wl (I)+ wj(I)*gjl for l ϵI; zero otherwise

glk(new) = (glk(old) + glj*gjk)/(1-glj*gjl), 

for l,k ϵI with l≠k and glj*gjl< 1;zero otherwise
4)  If | I | ≥ 1 go to step 1; otherwise stop
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Illustrative example
• Consider an oncology trial with k =3 designed to 

compare a  treatment A + SOC versus placebo + SOC 
for superiority on two primary endpoints PFS and OS. 

• The trial also has two secondary endpoints SE1 and 
SE2. The endpoint SE1 can be tested only when the trial 
is successful on PFS. Similarly, SE2 can be tested only 
when the trial is successful on OS.
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Illustrative example (cont’d)

• Therefore, there are 4 hypotheses to test

o H1 and H2 are primary and are associated with PFS 
and OS, respectively

o H3 and H4 are secondary and associated with SE1 
and SE2

o (H1, H3) and (H2, H4) are pairs of parent-descendant 
hypotheses (Maurer et al., 2011)
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Calculations/decisions  at the 1st interim look
• Graph (a): I = {1, 2, 3, 4), (wi(I), i =1, ..4) = (1/5, 4/5, 0, 0), α = 

0.025

Suppose that the O-F type spending function at information 
times (t1, t2, t3) = (1/2, 3/4, 1)

Recall: O-F type spending function is f(γ, t) = 2[1-Φ(z1-γ/2/t1/2)]

• With the above information, at t1 = 0.5, the alpha critical 
boundary values are {αi,t1 (wi(I)α), i =1, 2, 3, 4} = {α1,t1 (0.005), 
α2,t1 (0.020), 0, 0} = {0.00007, 0.0010, 0, 0} (calculations using 
software East 6.3)

• Suppose that unadjusted pi,t1 ≥ αi,t1 for all i = 1, 2, 3, 4 

• Therefore, the trial continues to the 2nd interim look
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Calculations/decisions at the 2nd interim look

• Graph (a): (wi(I), i =1, ..4) = (1/5, 4/5, 0, 0), but t2 = 3/4. 

• Therefore, by the O-F type spending function, at t2 = 3/4, 
the alpha critical boundary are:

{αi,t2 (wi(I)α), i =1, 2, 3, 4} = {α1,t2 (0.005), α2,t2 (0.020), 0, 0} = 
{0.00117, 0.00690, 0, 0} 

• Suppose that, at t2, p1,t2 = 0.001,  p2,t2 = 0.020, p3,t2 = 
0.040, p4,t2 = 0.091. 

• Therefore, H1 is rejected and one is in graph (c)
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Calculations/decisions at the 2nd interim look

• Graph (c):  F = {2, 3, 4} and (wi(F), i = 2, 3, 4) = (9/10, 
1/10, 0).  One can now retest H2 and also test H3 by this 
graph. For this graph:

{αi,t2 (wi(F)α), i =2, 3, 4} = {α2,t2 (0.0225), α3,t2 (0.0025), 0} = 
{0.00802, 0.00047, 0}

• Therefore, HF is not rejected, consequently, none of the 
other hypotheses are rejected, and one proceeds to the 
3rd look 
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Calculations/decisions at the 3rd interim look

• Assume that H1 remain rejected at the 3rd look. 
Therefore one is in graph (c), where F = {2, 3, 4} and 
(wi(F), i = 2, 3, 4) = (9/10, 1/10, 0), but t3 = 1. 

• Therefore, again by the O-F type spending function, at t3
= 1, the alpha critical boundary values are {αi,t3 (wi(F)α), i
= 2, 3, 4} = {α2,t3 (0.0225), α3,t3 (0.0025), 0} = {0.01988, 
0.00234, 0}

• Suppose that, at t3,  p2,t3= 0.012, p3,t3 = 0.008, p4,t3 = 
0.041. Therefore, H2 is rejected and one is in graph (d)
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Calculations/decisions at the 3rd interim look

• Graph (d): F = {3, 4} and (wi(F), i = 3, 4) = (2/5, 3/5). 
Therefore, {αi,t3 (wi(F)α), i =3, 4} = {α3,t3 (0.01), α4,t3 
(0.015)} = {0.00907, 0.01344}

• Therefore, H3 is rejected. But H4 is not rejected 
because p4,t3 = 0.041> α4,t3 (0.025) = 0.02200
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Concluding Remarks (Part II)
1. Methods based on Bonferroni inequality, as stated, will 

be rarely used because of low power 
2. CTP based procedure of Tang & Geller (1999) 

simplifies on using weighted Bonferroni tests for 
intersection hypotheses with weights satisfying 
consonance property

3. The above approach can be applied for 2 or more 
hypotheses on using the graphical method with the use 
of appropriate α-spending functions

4. The above approach leads to α-recycling similar to non-
GS procedures but it occurs through the α-spending 
functions applied
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Example of a GS trial design for testing a 
primary and a secondary endpoint of a trial
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2-stage GS trial with 2 endpoints

• Endpoints:   X= primary, Y = secondary

• Null hypotheses: Hi: δi =0 (i =1, 2) of no treatment effects 
on X and Y,  respectively, tested against 1-sided 
alternatives  

• (X1, Y1) and (X2, Y2) are pairs of normal Z-test statistics 
on X and Y, at information times t1 and t2 =1, 
respectively.

• H2 is tested only after the procedure rejects H1

119Huque 2015



2-stage GS trial with 2 endpoints (cont’d)

• Assumption:  X and Y jointly follow bivariate normal 
distribution with correlation coefficient of ρ ≥ 0,

(c1, c2) = boundary values for rejecting H1; 

(d1, d2) = boundary values for rejecting H2

• Unethical to continue the trial if it is successful in 
rejecting H1
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Procedure (2-statage design)
Ref: Tamhane et al. (Biometrics 2010)

• Step 1:
X1 ≤ c1 → Go to Step 2
X1 > c1  → Reject H1 and test H2

Y1 > d1 → Reject H2; else retain it.
(in either case terminate the trial)

• Step 2:
X2 ≤ c2 → terminate the trial w/o any rejection
X2 >c2  → Reject H1 and test H2

Y2 > d2 → Reject H2; else retain it.
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Determination of boundary values
(c1, c2) and (d1, d2)

• Use of CTP requires considering hypotheses H1∩H2, 
H1, and H2

• For this design, rejecting H1 at level α also rejects 
H1∩H2 at the same level α.

Proof: Consider R1 and R2 as rejection regions 
for H1, and H2, respectively.

H1∩H2 is rejected at level α if Pr (R1 U R2} ≤ α. 
But Pr (R1 U R2} = Pr (R1} ≤ α, as R2 = is a subset 
of R1, because H2 is tested only after H1 is 
rejected.
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Determination of boundary values
(c1, c2) and (d1, d2)

• The boundary values (c1, c2) for this design can be 
obtained from the equations:  

Pr (X1 > c1 |H1) = f1(α , t1) 

f1(α , t1) + Pr (X1 ≤ c1 ∩ X2 >c2 |H1) = f1(α , t2 =1)

where, f1 (α , t) is the spending function for the endpoint X

• The boundary values (d1, d2) for Y (after rejecting H1 which 
rejects H1∩H2) is at level α by the CTP. These boundary 
values can be obtained using the spending function f2(α , t) 
for Y which could be the same as f1(α , t1) or different from 
it.
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Example
• Values of c1 and c2 , for k =2, f1(α, t) = 2[1-Φ(z1-α/2/t1/2)], 
α=0.025, and t1 = 0.50:

c1 = 2.95901, c2 = 1.96869 (on z-scale)

α1(x),t1 = 0.00154, α2(x),t2 = 0.02449  (p-value scale)

• Values of d =d1 = d2 , for k =2 by the PK boundary at 
α=0.025, and t1 = 0.50:

d = 2.17828 (on z-scale), α(y),t1 = 0.01469 (p-value 
scale)

• Issue: Is it possible to take advantage of the 
correlation ρ in [0,1) and find d* ≤ d that give FWER 
control at level α?
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Finding d* ≤ d on taking advantage of 
correlation between endpoints X and Y (cont’d) 

• There are 3 null hypotheses configurations: H1∩H2, 
H1∩K2 and K1∩H2, where K1 and K2 are alternatives to H1 
and H2, respectively. 

• The type I error for the first two configurations is ≤ α
regardless of the truth and falsity of H2

• Therefore, such a d* needs to be found on considering 
K1∩H2 and the equation:

Pr{X1 > c1 ∩ Y1 > zy | K1∩H2 }  + 

Pr{X1 ≤ c1 ∩ X2 > c2 ∩ Y2 > zy | K1∩H2 } = α (1)
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) Finding d* ≤ d on taking advantage of 
correlation between endpoints X and Y  (cont’d

• Further, we know that 

Cov{X1, X2) = (t1)1/2, Cov{X1, Y1) = Cov{X2, Y2) = ρ, 
and Cov{X1, Y2) =  ρ(t1)1/2.  

• Also, E(X1) = θ(t1)1/2 , E(X2) = θ and E(Yj) = 0 for j =1, 2 
(because of K1∩H2 and θ is the drift parameter)

• Further, one can show that, given X2 = x2, statistics  X1
and Y2 are independently normally distributed as:

X1 is N{ x2(t1)1/2, 1-t1} and Y2 is N{ (x2 – θ) ρ , 1- ρ2}

• Therefore, eq. (1) can be written as:   (next slide)
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Evaluation of Eq. (1)
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Φ is the cumulative distribution functions for the N(0,1) r.v.
Φ12 is cumulative distribution function for the 
standard bivariate normal with correlation coefficient of ρ

(1)+

Huque 2015



Finding d*:
Assume that values of ρ, t1, c1 and c2 are given. 

Then for each θ > 0, one can find zy that satisfy eq. (1).

Therefore, one can construct a graph zy = f(θ) over the 
interval θ > 0 that satisfy eq. (1).  

This will find d* = the largest zy so that the RHS of eq. (1) is 
≤ α for all θ > 0.
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Graph of zy = f(θ) over the interval θ > 0 
satisfying eq. (1)



Table: d*-values for different correlations
α = 0.025, k = 2, t1 =0.5, c1 = 2.95901, c2 = 1.96869 (OF-like)
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Correlation
ρ

d* 
(Z-scale)

αd*
(p-value scale) θ = θ*

0.0
0.1
0.2
0.3
0.4
0.5
0.6
√0.5
0.8
0.9
0.99
0.999

1.95996
1.96958
1.98063
1.99160
2.00497
2.01872
2.03407
2.05314
2.07326
2.10262
2.15450
2.17026

0.02500 
0.02444 
0.02382 
0.02321 
0.02248 
0.02176 
0.02097 
0.02003 
0.01907 
0.01775
0.01560 
0.01499 

θ* = all θ > 6.5
4.54
4.12
4.00
3.43
3.11
2.78
2.45
2.15
1.79
1.31
1.20

PK value
Conservative

d =2.17828 αd= 0.01469
α/2=0.0125

-
-

Note: θ = θ* is the value of θ where zy is maximum on the graph 
zy = f(θ) satisfying  eq. (1), for θ > 0.



Concluding Remarks
• In testing a primary and a secondary endpoint null 

hypotheses for a confirmatory trial, if the correlation 
between the primary and secondary endpoints cannot be 
ascertained, then one would test  
1) The primary endpoint null hypothesis by an α-spending 

function such as OF-like using full alpha
2) The secondary endpoint can be tested by PK boundary value 

at the information time the primary endpoint null hypothesis is 
rejected

• However, if the correlation is known, or if it is known not 
to exceed ρ0, then the result of the previous table can be 
applied for normal distributions of the test statistics
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Thank You 
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